Terminales ES - L

Ressources adaptées au programme de mathématiques de terminale ES/L


Le programme commun des terminales ES et L (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Statistique et probabilités
  3. Enseignement de spécialité (filière ES)

Deux capacités transversales :

 
Articles du programme de Terminales ES - L

Les mathématiques ont bénéficié, dans la France et l’Europe du XIXème siècle, d’une nouvelle forme de communication : les périodiques qui leur ont été dédiés. Les Annales de Joseph-Diez Gergonne, publiées mensuellement de 1810 à 1832, constituent le premier journal de mathématiques. Joseph Liouville, en digne successeur de Gergonne, publia à partir de 1836, sous une forme héritée des Annales, le Journal de Mathématiques Pures et Appliquées. Nous nous intéressons ici à ces deux périodiques sous un angle transdisciplinaire : histoire de la diffusion scientifique en les situant par rapport à d'autres journaux de cette première moitié du XIXème siècle, histoire des mathématiques, épistémologie.

Destinés à être utilisés par un enseignant dans sa classe, ces DVD et leur livret d’accompagnement pédagogique s’adressent aussi à tous les curieux des mathématiques. Ils s’apparentent à un voyage dont les différentes escales sont des expérimentations menées au Palais de la découverte par Pierre Audin, médiateur scientifique au département Mathématiques de cet établissement.

La mesure des figures ou la détermination de points inaccessibles à la mesure directe étaient souvent considérées par les Anciens eux-mêmes comme l’origine de la géométrie. Tout naturellement les noms des (hypothétiques) pères fondateurs, Thalès et Pythagore, leur étaient associés. Les Éléments d’Euclide représentent déjà une élaboration sophistiquée des théorèmes susceptibles de justifier de telles procédures. Dans cette optique,  le chapitre V propose une lecture du premier Livre du traité euclidien: établir les fondements de la mesure des figures rectilignes. L’analyse régressive du théorème de l’hypoténuse (dit de Pythagore, I. 47-48 chez Euclide) fournit une justification de l’insertion des principaux constituants de l’axiomatique euclidienne.

Ce texte est issu d'une conférence à deux voix sur l’enseignement des mathématiques en France et en Allemagne donnée en anglais par H. Gispert et G. Schubring à Prague en juillet 2007. Son but est de montrer combien l’enseignement mathématique – son organisation, ses contenus, ses fonctions - dépend du temps et du pays où il est donné. Nous présenterons ici, assez succinctement, ce qu’il en a été en France de l’enseignement moyen et long des mathématiques dans les trois premiers quarts du XXe siècle.

 

Ce dossier a été réalisé à l'occasion du centième anniversaire de la Commission Internationale de l'Enseignement Mathématique (CIEM / ICMI) qui a été commémoré du 5 au 8 mars 2008 à Rome. Il rassemble des entretiens filmés, des articles et des repères chronologiques qui jalonnent quelques unes des grandes mutations qui ont bouleversé l'enseignement des mathématiques en France et dans le monde depuis le début du XXe siècle.

Les livres de l'époque hellénistique (IIIe-Ier siècle avant notre ère) sont des rouleaux de papyrus écrits en majuscules, en principe sur une seule face, de taille relativement standardisée et modeste, donc de contenu assez limité...

Section d'une droite et égalités d'aires associées. De la quadrature d'une aire rectiligne...

Soient quatre droites quelconques AB, BC, CD, DA et un point M. On mène à partir de M les perpendiculaires ME, MF, MG, MH sur ces quatre droites ou leurs prolongements...

Le chapitre IV présente le premier texte grec complet conservé consacré à la géométrie, les Éléments d’Euclide. Comme les érudits de l’Antiquité eux-mêmes , nous ne savons à peu près rien de la vie de l’auteur : contraste saisissant avec le succès, l’influence, mais aussi les critiques, que l’ouvrage connaîtra durant près de deux millénaires. Le projet et le style impressionnent ; le plan du traité fut perçu comme singulier dès le Moyen-Âge.

Ce livre s’inscrit dans le prolongement de l’œuvre de Ian HACKING, L’émergence de la probabilité, publiée en 1975 aux éditions du Seuil, où l’auteur s’attachait à reconstituer la genèse des probabilités entre 1654 et 1737. Fondé sur les recherches les plus récentes, en particulier sur celles élaborées dans le cadre du séminaire de l’histoire du calcul des probabilités et de la statistique de l’École des Hautes Études en Sciences Sociales, l’ouvrage Mathématiser le hasard traite non seulement de l’émergence mais aussi de la constitution même du savoir probabiliste envisagé dans son historicité.