Collège (cycle 4 | 5e-3e)

Ressources adaptées au programme de mathématiques de seconde


Le programme du cycle 4 (5e, 4e, 3e ; rentrée 2016) est disponible en version pdf.

Il est découpé en quatre grands thèmes, et assorti de l'enseignement de l'informatique et des EPI. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Nombres et calculs ;
  2. Organisation et gestion de données, fonctions ;
  3. Grandeurs et mesures ;
  4. Espace et géométrie

 

 
Articles du programme de Collège (cycle 4 | 5e-3e)

La notion de lieu occupe dans le système cartésien une place stratégique : elle en manifeste la singularité tant dans le domaine de la physique que dans celui de la métaphysique...

Ce livre fait découvrir, en s'appuyant sur le patrimoine Haut-Normand, la richesse des instruments scientifiques qui attestent de la multiplicité des champs d'application des mathématiques à travers l'histoire...

Cet article donne quelques repères historiques des périodes védique, classique et Monghols pour aborder l'histoire des mathématiques en Indes.

La tradition savante indienne est traversée par un paradoxe : une abondance de manuscrits témoigne de textes qui privilégient une transmission orale du savoir. Il en va ainsi pour les mathématiques, comme pour d’autres disciplines savantes. Cette prééminence de l’oralité comme valeur de transmission du savoir, a-t-elle eu une influence sur la manière dont on a pratiqué les mathématiques en Inde? Pour répondre à cette question, l'auteur nous entraîne dans l'aventure des manuscrits au travers de la tradition védique et de la culture sanskrite.

En 1853, A. Rhind achetait sur le marché des antiquités un papyrus découvert dans les fouilles illégales dans ou près du Ramesseum à Louxor. Donné au British Museum après sa mort, le Papyrus de Rhind était publié par A. Eisenlohr en 1877, mais il reste peu étudié jusqu'à l'édition de T.E. Peet en 1923.  En 1893, V. Golenischev achetait un papyrus mathématique. Il vendait ses papyri au Musée Pushkine en 1909. Ce n'est qu'en 1930 que V. Struve publiait le "papyrus mathématique de Golenischev" ou "papyrus de Moscou".

Cet article donne quelques points de repère pour aborder l'histoire des mathématiques en Chine depuis la Dynastie Han.

Un nombre est régulier en base 60 s’il est inversible en base 60, c’est-à-dire si sa décomposition en facteurs premiers ne contient que des puissances de 2, de 3 et de 5...

La numération obéit à un principe de position à base 60 : une unité dans une position représente soixante unités de la position qui la précède (placée à sa droite) ...

L’architecture créole réunionnaise recourt abondamment à des motifs géométriques. Les lambroquins, ces frises de bois ou de tôle qui bordent les toitures, en constituent l’un des éléments les plus caractéristiques. Dans ce dossier, on se propose de présenter l’origine, la fonction utilitaire et la fonction décorative des lambroquins, d’étudier plus spécifiquement leur structure géométrique et de les situer par rapport à l’ensemble des dessins à motifs répétitifs employés dans l’art et l’architecture. Les cinq types de lambroquins rencontrés à la Réunion, leurs fréquences d’emploi et leurs enrichissements esthétiques constituent une véritable signature ethnomathématique de la culture créole insulaire qui s’est développée dans ce département français de l’océan Indien.