Premières ES - L

Ressources adaptées au programme de mathématiques de première ES/L


Le programme commun des premières ES et L (B.O. 2010) est disponible en version pdf.

Il est découpé en deux grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Algèbre et analyse
  2. Statistique et probabilités

Deux capacités transversales :

 

 
Articles du programme de Premières ES - L

'équation tragique d'un jeune mathématicien de génie, esprit rebelle broyé par la folie meurtrière du 20ème siècle. La courte vie de Wolfgang Döblin, mathématicien de génie, fils du célèbre écrivain Alfred Döblin. Antinazi de la première heure,   l'auteur de “Berlin Alexanderplatz” avait dû fuir l'Allemagne en 1933 avec sa famille. Naturalisé français, Wolfgang vivra la  “drôle de guerre” comme simple soldat dans les Ardennes et en Lorraine, où il poursuivra ses recherches sur les “mouvements aléatoires” en probabilités...

Ce film traite de réfraction de la lumière. Il  est donc question plus de physique que de mathématiques. Néanmoins, les professeurs de mathématiques de collège y trouveront pour leurs élèves un exemple d'application de la proportionnalité et de la trigonométrie dans une situation issue de la physique.

Le problème de la quadrature du cercle, à savoir, le problème de construire un carré ayant même aire que celle d'un cercle donné, restait un problème ouvert parmi les mathématiciens du début du XVIIème siècle. René Descartes (1596-1650) en donna une solution dans les années 1625-1628 dont il déclara lui-même qu'elle n'était pas acceptable. Cet article examine cette solution, en s'appuyant sur une analyse donnée un siècle plus tard par Euler ainsi que sur une solution connue depuis l'antiquité et rapportée par Pappus. On s'interrogera ensuite sur les raisons qui ont amené Descartes à exclure les deux constructions en tant que non acceptables, par rapport à l'idéal d'exactitude explicité dans La Géométrie (1637).

Unique revue mathématique de vulgarisation accessible à tous, Tangente offre, tous les deux mois, un éclairage nouveau sur le monde.

Vous êtes-vous déjà demandé : Pourquoi les alvéoles de nids d’abeilles avaient cette forme-là ? Quelle est la probabilité de gain au loto ou à la roulette ? Comment couper une pizza en parts égales ? Comment les Grecs calculèrent le rayon de la Terre ? Comment organiser des tournois de foot ?

Les mathématiques ont fait la preuve d’une efficacité presque déraisonnable, selon l’expression d’Eugène Wigner, dans le domaine des sciences physiques et de leurs applications technologiques. Leur rôle en biologie et en sciences sociales a été plus modeste, mais tend actuellement à se développer grâce aux possibilités de simulation qu’offrent les ordinateurs...

Il est d’usage d’appeler « langues naturelles »  la grande diversité de langues auxquelles l’évolution de l’espèce humaine a donné naissance tout autour de la planète depuis l’apparition de l’homme, et dont on sait qu’elle est menacée aujourd’hui au point que, des six mille langues parlées, plus de la moitié auront disparu au siècle prochain...

Dans la tradition musicale savante occidentale (et cela vaut aussi pour les traditions savantes non occidentales comme la tradition chinoise), la musique a toujours été associée aux mathématiques. Dans le contexte de sociétés sans écriture, en revanche, cette association peut paraître plus surprenante. Le but de cet article est de montrer quelques cas de répertoires musicaux de tradition orale dans lesquels on peut mettre en évidence des structures musicales complexes comparables à des constructions mathématiques.

On peut montrer que sous certaines conditions  la structure en escalier est logiquement équivalente à la structure de canon. On représente les formules de harpe comme des mots binifinis sur l'ensemble des couples de cordes noté C, c'est-à-dire des applications de Z dans C. L’ensemble des valeurs de u est la partie C' des couples de C apparaissant dans u.

Après la floraison des IIIe-IIe siècles, les institutions savantes alexandrines, confrontées aux incertitudes politiques et aux querelles dynastiques, connaissent une éclipse. Les recherches mathématiques se poursuivent sans doute ailleurs, notamment à Rhodes, mais, semble-t-il grâce à l’intervention puis la protection des Romains, l’ancienne capitale des Ptolémées va connaître un nouvel âge d’or mathématique. Trois grandes figures dominent les deux premiers siècles de notre ère : Ménéalos, Ptolémée et Héron. Leurs travaux reprennent, corrigent et développent ceux de leurs prédécesseurs de la première période alexandrine, notamment dans les domaines où la géométrie trouve ses applications les plus efficientes : astronomie, optique, mécanique.