CultureMath
[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple
Ce résultat est assez connu sous une forme plus faible : période 3 implique période n pour tout entier n. C'est-à-dire qu'une fonction continue, d'un segment dans lui-même, ayant un point de période 3 a nécessairement un point de période n pour tout n. En fait, ceci est une conséquence du théorème de Sharkovskii, qui affirme que si une fonction continue d'un segment dans lui-même a un point de période m (m entier), alors cette fonction a un point de période n pour tout n plus grand que m pour l'ordre de Sharkovskii (ordre sur les entier dont 3 est bien sûr le plus petit élément).
On appelle, de nos jours, équation aux dérivées partielles (EDP) une équation dont l'inconnue est une fonction f de plusieurs variables et qui fait intervenir les dérivées partielles de f par rapport à ses multiples variables...
L’épistémologie est la philosophie des sciences. L’épistémologie mathématique a pour but de réfléchir à ce que l’on fait vraiment quand on fait des mathématiques, et d’analyser le rapport entre cette pratique et la pratique des autres sciences. Les mathématiques ont une histoire, et leur histoire est toujours en cours. Aussi cet ouvrage se propose d’éclairer par l’histoire les questions soulevées...
D'après Jean Dieudonné, un mathématicien est avant tout « quelqu'un qui a publié au moins la démonstration d'un théorème non trivial ». Autant dire qu'il n'y a de mathématicien que parce que les mathématiques sont difficiles... Pourtant, cette difficulté est quasiment contre-nature : comme l'a souligné Poincaré, dans l'activité mathématique, l'esprit « n'agit ou ne paraît agir que par lui-même et sur lui-même »...
Ce nouveau recueil dans la série (désormais bien installée et connue des taupins) « Les clés pour... » n'est pas consacré à une école (comme les deux tomes pour l'École Polytechnique ou le tome consacré aux concours des Mines), mais à une filière spécifique: la PSI. L'acronyme de cette filière de classes préparatoires signifie Physique et Sciences de l'Ingénieur, mais dissimule (à tort) l'importance des mathématiques dans cette formation équilibrée...
Vous n’arrivez pas à convaincre vos proches que vous faites des mathématiques sous prétexte que c’est un art, la clé du monde, la beauté à l’état pur, que la philosophie n’est pas assez exacte ou que tout le monde a essayé de vous dissuader ?
Lorsque l'on s'intéresse au patrimoine génétique d'une population, il est souvent intéressant d'étudier également les liens de parenté entre les individus de cette population. Le processus coalescent de Kingman est un modèle probabiliste qui associe à un petit nombre d'individus pris au hasard dans une population leur arbre généalogique. En utilisant ce modèle, on peut tester des hypothèses sur la dissémination de mutations. Nous étudierons ici quelques propriétés du processus coalescent de Kingman.
Dans l'article nous nous intéressons au nombre de lignées distinctes présentes à l'instant t dans l'arbre généalogique. Dans cet encart, nous allons étudier le nombre de descendants de chacune de ces lignées...
Considérons $\Pi^n$ un $n$-coalescent de Kingman qui à l'instant $t$ est dans la partition $\pi$. Lorsqu'on s'intéresse à la restriction de ce processus à $n-1$ individus, deux cas se présentent.
Les conditions économiques et sociales en Angleterre au début du XIX° siècle induisent des tensions dans les milieux universitaires jusqu'alors très fermés. Cette agitation se traduit, pour ce qui nous intéresse, à travers la manière d'insérer la logique dans un enseignement en pleine mutation. Des avancées conceptuelles d'apparences mineures voient alors le jour et c'est sur Boole, mathématicien autodidacte, que tout se cristallise : il réussit à construire un système de type algébrique pour résoudre les problèmes de logique. Son 'algèbre de la logique', qui est vraiment opérationnelle par delà ses réelles insuffisances, sera critiquée, contestée. Mais l'élan a été donné, la logique va devenir une branche des mathématiques.