CultureMath
[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple
Chaque suffixe de longueur $l + 1 = (2l + 1) - l$ a une hauteur égale à $2h - (h - 2) = h + 2$ ou $2h - (h - 1) = h + 1$. Pour tout entier $i$ le préfixe de longueur $l + 1$ du mot conjugué $\delta^i(m)$ est égal au suffixe de longueur $l + 1$ du mot conjugué $\delta^{i + l + 1}(m)$. Ainsi les préfixes de longueur $l$ ont une hauteur inférieure à $h$ et les préfixes de longueur $l + 1$ ont une hauteur supérieure à $h$. Il n'existe donc aucun préfixe de hauteur $h$ et le mot rythmique $m$ est impair...
L’ethnomusicologue Simha Arom a observé une structure rythmique asymétrique utilisée entre autres par les Pygmées Aka de la vallée de la Lobaye, République centrafricaine. La propriété caractéristique de ces formules rythmiques, l’imparité rythmique, a été étudiée par Marc Chemillier (Mathématiques de la musique d’Afrique centrale, CultureMATH, 2009). Cet article propose une nouvelle approche de cette propriété et en donne un théorème de caractérisation.
Cycle de conférences organisées depuis 2006 par la Bibliothèque nationale de France et la Société mathématique de France.
Mêlant histoire et mathématiques, ces conférences permettent à un large public de découvrir les mathématiques contemporaines.
Le principe: le conférencier choisit un texte mathématique datant de plusieurs dizaines d’années, voire bien plus, qui l’a particulièrement influencé...
Le travail qui vous est livré est le résultat d’une réflexion qui s’effectue sur trois registres, philosophique, mathématique et historique. Par ces trois voies, il doit permettre au lecteur d’entrer dans l’oeuvre profonde et difficile du mathématicien Sophus Lie. Si Lie est connu pour les concepts fondamentaux qu’il a introduits (groupes et algèbres de Lie, omniprésents dans les mathématiques), on connaît peu son oeuvre gigantesque dans son ensemble, ses lignes directrices et ses objectifs, et surtout son unité.
L’usage des ordinateurs a ranimé l’intérêt pour des techniques algorithmiques nées en d’autres lieux et d’autres temps. Souvent délaissées par les historiens et les scientifiques modernes, plus attachés à la constitution des concepts, ces procédures s’avèrent pourtant déterminantes dans les élaborations théoriques. Sans prétendre à l’exhaustivité, l’objectif de cet ouvrage est d’offrir un support historique et une épaisseur culturelle aux pratiques algorithmiques contemporaines...
Est-il possible de caractériser l’espace euclidien tridimensionnel qui s’offre si immédiatement à l’intuition physique au moyen d’axiomes mathématiques simples et naturels ? Plus généralement, est-il possible de caractériser les espaces de Bolyai-Lobatchevskii à courbure constante négative, ainsi que les espaces de Riemann à courbure constante positive, à l’exclusion de toute autre géométrie contraire à une intuition directe ?
Ce texte a été écrit à la fin de ma thèse, pour essayer de donner aux non-mathématiciens une idée du monde dans lequel j’avais baigné pendant quelques années. C’était l’occasion de présenter rapidement, à travers quelques exemples, la théorie des systèmes dynamiques.
Bernhard Riemann (1826-1866) rêvait d’une théorie mathématique qui décrirait toutes les lois de la nature. Timide et réservé dans la vie, il était audacieux lorsque son esprit s’emparait d’idées inattendues qui dépassaient le cadre des mathématiques et s’aventuraient dans la physique, la philosophie naturelle et même la psychologie...