Terminale S

Ressources adaptées au programme de mathématiques de terminale S


Le programme des premières S (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes (plus deux pour l'enseignement de spécialité), et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités
  4. Arithmétique (enseignement de spécialité)
  5. Matrices et suites (enseignement de spécialité)

Deux capacités transversales :

 

 
Articles du programme de Terminale S

Dans ses Réflexions sur la cause générale des vents (1747), puis dans son Essai d'une nouvelle théorie de la résistance des fluides (1752), D'Alembert délaisse l'approche unidimensionnelle du parallélisme des tranches au profit d'une nouvelle méthode qu'il applique notamment, dans le second traité, à la mise en équation des écoulements plan (c'est-à-dire des écoulements supposés ne dépendre que de deux variables d'espaces).

Comment rendre compte de l'écoulement d'un fluide à l'intérieur d'un vase ouvert ou percé d'un orifice en son fond ? Dans l'Hydrodynamica, publiée en 1738, Daniel Bernoulli fournit une piste prometteuse par le biais d'une approximation unidimensionnelle due à Newton

Avec Daniel Bernoulli, Jean Bernoulli et Euler, D'Alembert est l'un des quatre grands artisans du processus de construction théorique de la science du mouvement des fluides qui s'étend entre 1738 et 1755. Il est en particulier l'auteur de trois grands traités : le Traité des fluides, publié en 1744 et qui contient une théorie unidimensionnelle des écoulements dans la droite lignée de celle de l'Hydrodynamica de Daniel Bernoulli ; puis les Réflexions sur la cause générale des vents (1747) et l'Essai d'une nouvelle théorie de la résistance des fluides (1752), fondés sur l'utilisation du calcul différentiel et intégral de fonctions de plusieurs variables et dans lesquels il inaugure une nouvelle approche, dite analytique, dont Euler s'inspirera quelques années plus tard pour établir ses célèbres équations.

"On associe souvent le nom de Galilée au tournant que constitua, pour les sciences, la mathématisation de la physique et, plus spécifiquement, celle du mouvement. Dans quelle mesure Galilée héritait-il de siècles de réflexions en philosophie naturelle et de tentatives d’employer des outils mathématiques pour rendre compte du réel ? Telle est la question-clé qui oriente cet ouvrage...

Bernhard Riemann (1826-1866) rêvait d’une théorie mathématique qui décrirait toutes les lois de la nature. Timide et réservé dans la vie, il était audacieux lorsque son esprit s’emparait d’idées inattendues qui dépassaient le cadre des mathématiques et s’aventuraient dans la physique, la philosophie naturelle et même la psychologie...

This article features a new type of algorithm whose goal is to give a better understanding of how prime numbers form themselves. It is called the Prime-Generating Algorithm or PGA.

 

Cet article décrit un algorithme qui propose un point de vue nouveau sur la génération des nombres premiers. On l’appellera Algorithme de Génération des Premiers ou AGP.

Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée, depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, non toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l'un et l'autre jouent des rôles complémentaires...