CultureMath
Ressources adaptées au programme de mathématiques de terminale ES/L
Le programme commun des terminales ES et L (B.O. 2011) est disponible en version pdf.
Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.
Deux capacités transversales :
Internet ! Tout le monde l’utilise… et pourtant qui peut dire comment cela fonctionne ? Comment font les millions d'ordinateurs connectés entre eux pour ne pas s'emmêler avec toutes ces images, ces films, ces discussions qui s'échangent en permanence entre toutes les personnes connectées ?
Créativité, beauté, universalités, génie... Que l'on qualifie les mathématiques ou l'art, les mêmes mots reviennent. Signe d'un lien secret unissant des domaines que tout semble opposer?
a géométrie incarne une forme de rationalité que l'on retrouve dans maints aspects de la civilisation grecque ancienne, l'urbanisme, les arts ou les théories politiques. Pourtant, c'est une discipline récente: il n'y a ni dieu, ni muse de la géométrie...
Pascal construit dans le Traité de la roulette des techniques géométriques très élaborées pour résoudre dix-huit problèmes ayant trait à la cycloïde (roulette). Il n’y a pas encore, en 1658, d’algorithme pour calculer une “intégrale”. Alors Pascal décompose la roulette en une multiplicité de cercles, crée des outils géométriques de calcul en subdivisant des lignes à l’infini, fait rentrer les « petites portions » ainsi obtenues dans un réseau d’échanges virtuoses, applique le tout au cercle et résout les problèmes...
Etudiant les tout premiers documents mathématiques chinois, Karine Chemla, chercheur au laboratoire « Recherches en épistémologie et en histoire des sciences et des institutions scientifiques », REHSEIS, (CNRS-Université Paris 7, Paris), est parvenue à des conclusions qui bousculent certaines idées reçues sur l’histoire des mathématiques...
Les mots espérance, sort, chance, hasard ont-ils la même signification ? Le concept d’espérance a-t-il précédé historiquement celui de probabilité ? Comment la « géométrie » du hasard initiée par Pascal et Fermat au milieu du XVIIe siècle a-t-elle été propagée dans le monde savant ?
Dans une petite ville du Massachusetts apparaît, au début des années 1980, un nombre important de leucémies infantiles. Faut-il s’inquiéter ? La statistique « inductive » montra que le nombre de cas observés était « significativement » supérieur à la normale et permit de mettre en évidence le syndrome du trinitrotoluène...
Le couple fréquence-probabilité, ainsi que la théorie instituant ce rapport qu'on peut appeler schématiquement "loi des grands nombres", est un leitmotiv de la période classique de l'histoire du calcul des probabilités. Il est au coeur du développement de la théorie et des préoccupations des probabilistes, comme de ses utilisateurs. Les programmes des lycées imposent de prendre une approche fréquentiste pour définir une probabilité. Cela pose le problème du statut de ces énoncés que l'on rassemble sous le nom de "loi des grands nombres". Peu de propositions mathématiques portent ce titre de "loi". Est-ce un théorème, comme il est utilisé habituellement pour le théorème de De Moivre-Laplace ? Est-ce un énoncé extra-mathématique, admis comme prémisse à toute théorie scientifique ?
Les bibliographies consacrées à l’œuvre majeure d’Augustin Cournot sont presque toujours fragmentaires, tant les domaines qu’il a explorés sont divers : mathématiques, économie, philosophie, histoire, sociologie, pédagogie. Or la pensée de Cournot est suffisamment riche et profonde pour ménager un réseau de passages d’un champ à l’autre.