Seconde

Ressources adaptées au programme de mathématiques de seconde


Le programme de seconde (rentrée 2009) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Fonctions
  2. Géométrie
  3. Statistique et probabilités

Deux capacités transversales (objectifs pour le lycée) :

 

 
Articles du programme de Seconde

L’équipartition stricte du triangle, c’est-à-dire le problème qui consiste à trouver la longueur d’une base et d’une transversale qui partage le triangle en deux parties d’aires égales, n’a pas de solution en nombres entiers.

Les figures (et l’écriture) on changé d’orientation entre les périodes sargonique et paléo-babylonienne, mais le vocabulaire, lui, n’a pas suivi ce changement d’orientation. En conséquence, les éléments « supérieurs » (selon l’orientation ancienne) sont en fait à gauche (à l’époque paléo-babylonienne), et les éléments « inférieurs » sont en fait à droite, comme le montre la figure ci-dessous.

Dans cette conférence destinée aux collégiens et aux lycéens, Cédric Villani nous fait suivre un long fil qui part de la géométrie du plan euclidien, en passant par la théorie des nombres, la topologie, la géométrie fractale, pour nous mener à ses travaux en théorie cinétique des gaz. Il nous montre alors comment cette théorie lui a permis de revenir à la géométrie, non euclidienne cette fois-ci !

Selon une idée répandue, la créativité mathématique de D'Alembert était motivée par la résolution de problèmes physiques. Pourtant, l'œuvre du savant contient aussi des mémoires de mathématiques pures. Existe-t-il, alors, un conducteur à sa démarche dans ce domaine ? Répondre à cette question n'est pas aisé. On ne trouve pas dans l'œuvre de D'Alembert de traité ou d'ouvrage consacré exclusivement aux mathématiques qui pourrait servir de référence et de source. Bien que parfois conséquents, ses mémoires de calcul intégral, souvent publiés dans les recueils académiques, ne prennent que rarement la forme d'un traité structuré. Par ailleurs, les mathématiques sont souvent disséminées dans des écrits portant sur d'autres sujets et elles apparaissent de manière impromptue au fil des textes. Ajoutons que le style dalembertien est désordonné et peu pédagogique - tendance qui s'accentue avec l'âge...
 

Vous êtes intrigué par les maths, mais les démonstrations compliquées vous rebutent ? Vous vous interrogez sur l’utilité des mathématiques ou sur leur origine dans l’histoire de l’humanité ? Alors, vous prendrez plaisir à lire ce Petit précis de Géométrie à déguster. Compagnon parfait du débutant curieux comme de l’amateur éclairé, cette introduction ludique au monde de la géométrie s’adresse à tous, quel que soit son niveau...

Brescia, février 1512. Les armées françaises de Louis XII envahissent la ville, la pillent et massacrent ses habitants. Dans la fureur du combat, un garçon de douze ans est frappé d’un coup de sabre en plein visage. Grièvement blessé, il restera bègue toute sa vie et sera connu sous le nom de Tartaglia (« bègue » en italien)...

Vous êtes intrigué par les maths, mais les démonstrations compliquées vous rebutent ? Vous vous interrogez sur l’utilité des mathématiques ou sur leur origine dans l’histoire de l’humanité ? Alors, vous prendrez plaisir à lire ce Petit précis d’Algèbre à déguster. Compagnon parfait du débutant curieux comme de l’amateur éclairé, cette introduction ludique au monde de l’algèbre s’adresse à tous, quel que soit son niveau...

Nous étudions, dans ce chapitre, la résolution d’un système de deux congruences simultanées, les modules étant premiers entre eux, telle qu’elle serait menée au lycée. Même si nous nous appuyons sur un problème historique, nous employons les notations modernes, notamment le signe de congruence introduit par Gauss...

Ce livre présente la logique sous un aspect original en s'attachant à en faire d'abord comprendre l'intérêt et la méthode. Le lien entre logique et raisonnement est ainsi constamment présent, les erreurs classiques de raisonnement analysées, et les notions de preuve et de déduction expliquées en prenant modèle sur des raisonnements courants...