CultureMath
[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple
ux États-Unis, dans le climat de guerre froide des années 1950, les mathématiques ont pris une importance stratégique, jusque-là insoupçonnée, dans de nombreux domaines (armements, nucléaire, aéronautique, conquête spatiale ou prévision météorologique)...
Ce texte a pour but de présenter les formes différentielles, objet très important dans les mathématiques et la physique moderne, à travers une application classique : la reformulation des Equations de Maxwell (qui modélisent l'électromagnétisme) sous une forme plus compacte et décrivant mieux les symétries observées expérimentalement des champs électrique et magnétique.
Imaginez une ronde de 100 personnes, portant tous des chapeaux de deux couleurs différentes. Chacun connait la couleur du chapeau de tous les autres, mais pas celle du sien. Maintenant, chacun son tour, les joyeux lurons peuvent dire un et un seul nom de couleur. Quand tous auront parlé, combien au maximum de personnes pourront connaître à coup sûr la couleur de leur chapeau ?
Les suites de Fibonacci, le nombre de parenthésages “légaux” possibles avec 2n parenthèses, le profil des montagnes... Ces sujets on un rapport, dans le monde des mathématiques ! Il existe en effet une manière assez générale d'étudier des suites dont la définition fait apparaître (clairement ou après analyse), des phénomènes de récurrence. Il s'agit d'introduire une série formelle associée à cette suite. Le but de ce texte est d'introduire cette notion qui généralise celle de polynôme en autorisant les degrés infinis.
Ce petit addendum de deux pages démontre un résultat simple mais surprenant : si l'on prend n chiffres quelconques, il existe une infinité de puissances de 2 commençant par ces chiffres !
Ce texte nous présente le lemme de Baire, ainsi que son créateur, René Baire, mathématicien maudit du début du XX° siècle. Il nous raconte, comme un récit, certaines théories qui ont révolutionné l'analyse il y a une centaine d'années, en les entremêlant d'éléments biographiques sur les principaux acteurs de ces petites révolutions, Borel, Lebesgue et Baire, moins connu du fait de son histoire plus tragique. Nous y croiserons, pêle-mêle, rivalité entre chercheurs, fonctions pathologiques (continues mais pas dérivables, etc...), remarques générales et petites digressions pour connaisseurs.
Ce texte part d'une observation expérimentale: quand on calcule une trentaine ou plus de valeurs de 2n , on constate que le premier chiffre est nettement plus souvent "1" que n'importe quel autre. Il arrive dans plus de 30% des cas ! Mais que signifie ce pourcentage ?
Les équations fonctionnelles, par leur diversité, le fait qu'il n'y ait pas de méthode standard ou universelle pour les résoudre, rivalisent aussi bien avec l'arithmétique que la géométrie, pour montrer la richesse des mathématiques. Elles obligent aussi l'étudiant ou le chercheur à appréhender la nécessité d'une argumentation rigoureuse.
Ce texte est une introduction rapide aux problématiques qui se posent aux mathématiciens qui s'intéressent à la biologie. Partant d'une interrogation légitime ("Les maths peuvent-elles être efficaces en biologie ?"), il se concentre ensuite sur la description d'un exemple d'application intéresante, la modélisation du chimiotactisme chez certaines amibes, montrant à la fois l'intérêt du langage mathématique, et les difficultés qu'on peut avoir pour résoudre un problème aussi complexe qu'un problème de biologie.