CultureMath
[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple
Saviez-vous que le sexe des crocodiles n'est pas déterminé génétiquement dès la conception, comme c'est le cas pour nous autres mammifères ? En fait, si l'œuf est pondu près de l'eau, dans une terre humide et donc fraiche, il donnera une femelle, s'il est pondu sur une terre sèche et donc plus chaude, il donnera un mâle ! Bien entendu, un milieu "intermédiaire" donnera des résultats intermédiaires.
En 1926, H.S.M. Coxeter calcula certaines intégrales intervenant dans des calculs de volumes, lors de ses études du groupe cristallographique. Pour ce faire, il utilisa des méthodes géométriques avancées, et soumit la découverte d'une preuve "élémentaire" à la sagacité des lecteurs de la Mathematical Gazette. Seul le mathématicien Hardy trouva une réponse !
Quelques notions élémentaires de théorie des groupes : définition d'une action de groupe, du groupe des transformations d'une figure.
Ce texte en deux parties a pour but d'introduire les lecteurs à cette avancée majeure du dix-neuvième siècle qu'est la notion de groupe. Il a été écrit afin de servir d'appoint aux candidats à l'agrégation interne ou externe, mais aussi pour toute personne désireuse de se cultiver !
Du compact-disc, au DVD, en passant par l'appareil photo numérique, le scanner, et une hypothétique télévision numérique (plus en panne politique que technologique), le numérique a fait une entrée progressive mais écrasante et sans doute irréversible dans la vie quotidienne. Ce n'est évidemment pas sans raison : pour le meilleur et pour le pire, les signaux numériques sont plus simple à dupliquer (et donc à diffuser), ils peuvent être efficacement compressés et transmis, ils sont faciles à stocker, et on peut aisément les manipuler.
Le "petit théorème de Fermat" est un bijou de simplicité et d'utilité. Depuis sa découverte il y a plus de 400 ans par Fermat, on l'a redémontré d'au moins 100 manières différentes ! Dans ce texte, à la limite des programmes d'arithmétique de terminale scientifique, nous vous proposons de (re)découvrir ce petit joyau sous plusieurs points de vue, ainsi que des applications (Wilson) et des réciproques partielles.
L'expérience du dessin de plans et la curiosité scientifique de Gaspard Monge ont à notre avis influencé sa manière, très visuelle, de raisonner en mathématiques. Il était aussi un enseignant remarquable. Le souci de former les futurs cadres de la nation, donc d'expliquer à la fois les notions mathématiques et leurs éventuelles applications est sans doute lié à son besoin de voir et de représenter de manière précise les objets mathématiques qu'il définit.
Ce texte a une forme inhabituelle sur ce site : c'est un problème destiné à explorer certaines propriétés de l'hyperbole y = 1/x. Il mélange géométrie plane, géométrie analytique et utilisation des moyens de calcul modernes, et pourra donner des idées d'exercices aux professeurs... tout en leur pemettant de s'exercer !
C. F. Gauss est toujours considéré par certains comme le plus grand mathématicien de tous les temps. Sa capacité calculatoire hors du commun, couplée à son goût pour la contemplation des idées abstraites l'on amené à résoudre des problèmes (parfois vieux de millénaires !) et à envisager avec une clarté géniale (bien qu'inquiète) les idées qui feraient les mathématiques du futur.