Logique

Nous présentons ici une définition et l'étude des propriétés élémentaires de l'ensemble des entiers naturels, définis dans le cadre axiomatique de la théorie des ensembles. Nous utilisons ces propriétés sans y penser, elles nous semblent évidentes... Mais peut-être méritent elles parfois que l'on s'y attarde quelque peu ?

Reste encore un pas à franchir dans nos extensions d'ensembles de nombres. Certaines équations algébriques extrêmement simples, à coefficients réels, restent sans solution réelle (par exemple, les réels négatifs ne sont pas les carrés de réels). D'où la nécessité d'étendre encore une fois notre ensemble de nombres, en formant un sur-corps du corps des réels, dont les éléments seront appelés nombres complexes. Ce sur-corps se révélera algébriquement clos, c'est-à-dire que cette fois toute équation algébrique (à coefficients complexes) aura des solutions (complexes).