CultureMath
Ressources adaptées au programme de mathématiques de terminale ES/L
Le programme commun des terminales ES et L (B.O. 2011) est disponible en version pdf.
Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.
Deux capacités transversales :
Les réactions au système créé par Boole auront une double conséquence. D'une part faire de la logique un enjeu dans les discussions philosophiques, et d'autre part conduire des mathématiciens à s'investir dans un domaine nouveau pour eux. En effet, les questions profondes alors soulevées par le développement des méthodes algébriques sont en résonance avec la production booléenne. La fin du XIX° siècle verra peu à peu s'élaborer, au niveau international, une recherche systématique pour intégrer au mieux cette logique nouvelle au corpus mathématique alors en cours de réorganisation. Ce processus aboutira au début du siècle suivant : la logique est bien une partie des mathématiques, et, de plus, elle en est le socle.
Quand l’histoire permet de faire la lumière sur les origines de neuf théories mathématiques pour mieux en comprendre les fondements... Les notions et concepts mathématiques ont souvent été inventés comme un moyen de résoudre des problèmes : comment maintenir la même pente dans la construction des pyramides ? comment creuser un tunnel par ses deux extrémités ? comment procéder à des partages, à des découpages de figures ? comment utiliser des représentations graphiques, des instruments pour effectuer des calculs d'ingénieurs, de congruences, d'erreurs ?
La définition de la causalité est une question centrale en philosophie des sciences qui, si elle suscite l'intérêt des philosophes depuis l'Antiquité, s'est vu profondément renouvelée depuis le milieu du XXe siècle. Ainsi, la philosophie de la causalité constitue aujourd'hui un domaine très dynamique. Néanmoins, les avancées dans l'analyse du concept de cause sont restées largement indépendantes des méthodes utilisées dans les sciences expérimentales pour identifier les relations causales...
On a dit, à juste titre, que D'Alembert n'avait jamais enseigné ... et il faut bien reconnaître que, lorsqu'on lit les Opuscules mathématiques, on peut parfois douter de ses intentions pédagogiques ! Mais cela ne signifie pas que D'Alembert ait été fermé à toute réflexion sur l'enseignement des sciences, même aux enfants...
Cet article, qui est entièrement de D'Alembert, sauf la définition du début, traduite de la Cyclopaedia de Chambers, est assez typique des positions de l'auteur en matière de physique. Il faut privilégier l'étude descriptive, voire mathématique, des phénomènes eux-mêmes plutôt que d'imaginer des "systèmes"; toutefois, il n'est pas interdit d'envisager avec prudence des mécanismes explicatifs, à condition de bien préciser ce qui est hypothétique et ce qui est avéré.
D'Alembert a signé environ 1700 articles, dont 90 % d'articles scientifiques parmi lesquels 90 % concernent les mathématiques au sens large, c'est-à-dire comprenant la mécanique, l'hydrodynamique, l'acoustique, l'astronomie, l'optique. C'est à ces derniers qu'est consacré ce chapitre.
Voici une séquence de travail scénarisée autour d’un texte proposant un algorithme qui permet de résoudre un système de trois congruences simultanées modulo des entiers premiers entre eux deux à deux.
Dans ce chapitre nous avons sélectionné deux types de sources. D’une part, des énoncés choisis pour leur présentation imagée du problème : sous un habillage « concret », ces textes nous montrent entre autres l’imagination au service des mathématiques. C’est ce qui a motivé leur regroupement et non les mathématiques mises en œuvre pour la résolution. Certaines solutions sont « brutes », d’autres sont accompagnées de commentaires, d’explications, ou de véritable justification mathématique.
Découvrez ou redécouvrez les grandes idées qui font la force des mathématiques en suivant l'incroyable destinée de la question de Kakeya. Ou comment une devinette apparemment enfantine a pu croître et se ramifier jusqu'à se transformer en un véritable défi lancé aux plus grands cerveaux de notre temps ?