Terminales ES - L

Ressources adaptées au programme de mathématiques de terminale ES/L


Le programme commun des terminales ES et L (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Statistique et probabilités
  3. Enseignement de spécialité (filière ES)

Deux capacités transversales :

 
Articles du programme de Terminales ES - L

En 1913, des moines adeptes de la secte hérétique orthodoxe de l’Adoration du Nom sont arrêtés et exilés dans les campagnes russes. Ils adoraient le Nom de Dieu, atteignant l’extase mystique en répétant sans cesse : « Le Nom de Dieu est Dieu ! ».

Cycle de conférences organisées depuis 2006 par la Bibliothèque nationale de France et la Société mathématique de France.
Mêlant histoire et mathématiques, ces conférences permettent à un large public de découvrir les mathématiques contemporaines.
Le principe: le conférencier choisit un texte mathématique datant de plusieurs dizaines d’années, voire bien plus, qui l’a particulièrement influencé...

L’usage des ordinateurs a ranimé l’intérêt pour des techniques algorithmiques nées en d’autres lieux et d’autres temps. Souvent délaissées par les historiens et les scientifiques modernes, plus attachés à la constitution des concepts, ces procédures s’avèrent pourtant déterminantes dans les élaborations théoriques. Sans prétendre à l’exhaustivité, l’objectif de cet ouvrage est d’offrir un support historique et une épaisseur culturelle aux pratiques algorithmiques contemporaines...

Le nom de Pythagore résonne dans l’histoire de la pensée depuis 2 500 ans. Peu de personnages historiques ont engendré un mythe d’une telle ampleur et dont la persistance est d’autant plus remarquable qu’aucune institution n’entretient sa mémoire. Mais de larges zones d’ombre subsistent et un grand nombre de questions viennent à l’esprit...

Comme tous les peuples du monde, les Mésoaméricains étaient soumis au rythme du dieu Soleil. Des pans entiers de la vie étaient inscrits dans une année organisée en 19 périodes, à savoir dix-huit ‘mois’ de vingt jours et un reste dit des jours inutiles, dormants, innommés…

Cette approche critique des nombres aztèques et mayas voudrait attirer l'attention des lecteurs sur les principaux systèmes d'écriture du nombre en usage dans l'antiquité mésoaméricaine. Les principaux sont les numérations écrites mayas et aztèques. La numération vigésimale de position des scribes mayas, de l'époque classique et des codex du postclassique, qui l'utilisèrent pour noter les dates dites du Compte long sous la forme d'un nombre à cinq chiffres exprimant, en nombre de jours, la durée écoulée depuis la date origine de la chronologie maya (11/08/-3113). La numération vigésimale additive des scribes aztèques, qui l'utilisèrent notamment pour noter, le plus souvent sous forme de nombres ronds à un ou deux chiffres significatifs, les quantités de tributs que chaque communauté devait remettre à la Triple Alliance.

Harvey et Williams (1981:1078-1079) présentent un tableau extrait d’un codex du XVIe siècle, dit codex Otlazpan. Il contient onze lignes contenant chacune un rectangle (avec ses largeur et longueur) et un impôt composé de trois sortes de tributs (pièces d’argent, charges de bois, têtes de volaille).

"On associe souvent le nom de Galilée au tournant que constitua, pour les sciences, la mathématisation de la physique et, plus spécifiquement, celle du mouvement. Dans quelle mesure Galilée héritait-il de siècles de réflexions en philosophie naturelle et de tentatives d’employer des outils mathématiques pour rendre compte du réel ? Telle est la question-clé qui oriente cet ouvrage...

Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée, depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, non toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l'un et l'autre jouent des rôles complémentaires...

Comment l’ordinateur a-t-il été inventé ? Comment s’est diffusée l’informatique ? Comment une technique donne-t-elle naissance à une science ? Comment stimuler ou freiner l’innovation ? Pourquoi la France, où l’on prétendait en 1947 avoir une « avance théorique » en calcul électronique, a-t-elle dû, vingt ans après, lancer un Plan Calcul pour rattraper son retard ?