Première S

Ressources adaptées au programme de mathématiques de première S


Le programme des premières S (B.O. 2010) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités

Deux capacités transversales :

 

 
Articles du programme de Première S

"On associe souvent le nom de Galilée au tournant que constitua, pour les sciences, la mathématisation de la physique et, plus spécifiquement, celle du mouvement. Dans quelle mesure Galilée héritait-il de siècles de réflexions en philosophie naturelle et de tentatives d’employer des outils mathématiques pour rendre compte du réel ? Telle est la question-clé qui oriente cet ouvrage...

Bernhard Riemann (1826-1866) rêvait d’une théorie mathématique qui décrirait toutes les lois de la nature. Timide et réservé dans la vie, il était audacieux lorsque son esprit s’emparait d’idées inattendues qui dépassaient le cadre des mathématiques et s’aventuraient dans la physique, la philosophie naturelle et même la psychologie...

Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée, depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, non toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l'un et l'autre jouent des rôles complémentaires...

On considère le choc de deux corps durs de masses  M et m se déplaçant en sens contraire, exemple donné par D'Alembert à l'article "Percussion" de l'Encyclopédie.  Si A et a sont leurs vitesses initiales et V, u les vitesses finales, "il est certain que les vitesses A, a peuvent être regardées comme composées des vitesses V et A-V, et u, a - u"...

D'Alembert refuse de faire d'une formule du type φdt= ±du, avec du l'élément de vitesse acquis/perdu pendant l'instant , l'expression  de la "force accélératrice" (ici, φ ) ce qui viendrait conférer une réalité à ce concept.

Le Traité de dynamique (1743) est le premier ouvrage de Jean Le Rond D'Alembert (1717-1783). Ce livre de mécanique analytique entend poser de nouveaux fondements pour cette science, un critère de clarté président à l'énoncé de trois principes fondamentaux dont la combinaison permettrait de résoudre tous les problèmes de mécanique. Comprendre cette velléité de refondation passe par l'examen d'un contexte philosophique, en particulier la prise en compte de thèses de Nicolas Malebranche (1638-1715), ainsi que par l'examen de travaux scientifiques contemporains.
Cet article vise alors à présenter les aspects essentiels, tant d'un point de vue scientifique que philosophique, d'un livre qui, dès sa publication, assura à D'Alembert une reconnaissance auprès de ses pairs.

Comment l’ordinateur a-t-il été inventé ? Comment s’est diffusée l’informatique ? Comment une technique donne-t-elle naissance à une science ? Comment stimuler ou freiner l’innovation ? Pourquoi la France, où l’on prétendait en 1947 avoir une « avance théorique » en calcul électronique, a-t-elle dû, vingt ans après, lancer un Plan Calcul pour rattraper son retard ?