Terminale S

Ressources adaptées au programme de mathématiques de terminale S


Le programme des premières S (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes (plus deux pour l'enseignement de spécialité), et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités
  4. Arithmétique (enseignement de spécialité)
  5. Matrices et suites (enseignement de spécialité)

Deux capacités transversales :

 

 
Articles du programme de Terminale S

Ce texte est une présentation systématique de deux théories de l'intégration : celle de Riemann et celle de Lebesgue. Ces deux cadres sont décrits par le menu, ainsi que les résultats les plus marquants (le plus souvent sans démonstration). L'objectif de ce texte est de servir de référence rapide pour la lecture d'autres textes, ou pour avoir une idée d'ensemble de ces théories sans devoir se plonger dans les détails les plus techniques, ou acquérir au prélable trop de connaissances abstraites.

Comment gagner à coup sûr au jeu de Nim ? Peut-on gagner à coup sûr aux échecs ? Ou bien est-ce qu'au contraire deux ordinateurs infiniment puissants jouant l'un contre l'autre aboutiraient nécessairement à une partie nulle ? Toutes ces questions tournent autour de la notion de stratégie, le jeu de Nim comme le jeu d'échecs étant des jeux à deux joueurs, finis.

Une équation n'est rien d'autre qu'une égalité entre deux membres. Souvent, il s'agit de déterminer une certaine quantité, connaissant simplement une égalité qui fait intervenir cette quantité inconnue. On parle d'équation algébrique lorsque l'on cherche à déterminer les racines d'un polynôme. Nous allons ici nous intéresser plus spécifiquement à ce type d'équation, et voir notamment des méthodes générales pour résoudre les équations algébriques de degré allant de 1 à 4.

La théorie des ensembles est entre autres choses une tentative de formalisation, dans un système d'axiomes assez simples et si possible intuitifs, de l'ensemble des connaissances mathématiques. En particulier, l'essentiel de l'arithmétique ou de l'analyse se déduirait de façon élémentaire, quoique assez longue, de cette axiomatique.

La démonstration la plus classique de ce résultat, par l'absurde, qui consiste à exhiber un nombre premier à tous les autres, est certes très élégante, mais assez contre-intuitive. Comment y penser si on ne la connaît pas déjà ? Celle que nous présentons ici, sans être radicalement différente, semble plus naturelle.

L'algorithme RSA, inventé en 1978, est plus que jamais d'actualité, puisqu'il reste 20 ans plus tard la cheville ouvrière de nombreux protocoles de cryptographie utilisés pour la transmission de tout type de données. Il est basé sur un principe d'inversion modulo un très gros nombre, lui-même produit de deux très gros nombres premiers.

Dans ce texte, nous allons présenter la théorie des cardinaux, du moins son début : définition, cardinal d'un ensemble et théorème de Cantor-Bernstein, addition et multiplication cardinale. En revanche, nous passerons sous silence le problème de l'exponentiation cardinale, qui est autrement plus compliquée.

Nous introduisons la notion d'ordinal de la façon la plus élémentaire possible, afin d'en présenter quelques propriétés, qui nous ont paru les plus importantes. Nous ne prétendons pas en faire une étude complète : par exemple, nous passons sous silence les notions d'addition, de multiplication ou d'exponentiation ordinale, qui sont des notions plus difficiles qu'il n'y paraît et mériteraient plus de travail.

Ayant construit les rationnels, voici bien sûr les réels, par la méthode des suites de Cauchy. Comme pour les rationnels, il faut vérifier que le nouvel ensemble étends celui des rationnels, et que les opérations, la relation d'ordre, la valeur absolue, se prolongent à l'ensemble des réels. Puis, sans bien sûr épuiser le sujet, nous nous penchons sur les propriétés topologiques de l'ensemble des réels : complétude, propriété de la borne supérieure ; propriétés qui sont à la base de toute l'analyse réelle.

Ayant construit les entiers naturels, quoi de plus naturel que de passer aux entiers relatifs. Là aussi, la présentation choisie est la plus axiomatique et rigoureuse possible. Partant de la définition des relatifs, vus comme des classes d'équivalence pour une relation d'équivalence bien choisie sur les couples d'entiers naturels, on en arrive peu à peu jusqu'à l'arithmétique élémentaire.